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A detailed set of "bootstrap" equations is formulated for zero-spin "external" particles based on a com­
bination of the N/D method with the superposition of top-ranking Regge poles in all three reactions of a 
four-line connected part. The contribution from each pole arises from a distinct strip in the Mandelstam 
representation so that double counting is avoided. Only real values of / with / ^ 1 need be considered in 
the bootstrap calculation. The amplitude emerging from our N/D equations is meromorphic in the right-
half / plane, and the Regge poles approach high-energy limits that are dynamically determined and which 
in some cases may lie to the right of / = 0. The reduced residues vanish in the high-energy limit. 

I. INTRODUCTION 

IT has been proposed that an approximation pro­
cedure for strong-interaction "bootstrap" calcula­

tions might be based on a combination of the N/D 
method with the superposition of a finite number of top-
ranking Regge poles for all the different channels con­
nected by analytic continuation.1 By "top-ranking" is 
meant poles whose trajectories reach or closely approach 
the right-half / plane for real values of the energy. Since 
it is expected that these leading poles make large con­
tributions over only a finite energy interval (at most a 
few GeV in width), the approximation is designed to be 
accurate in "strips" covering the low-energy resonance 
region and high energies at low momentum transfer. 
The spirit of our scheme is similar in this sense to that 
of the strip approximation proposed earlier by Chew 
and Frautschi2 but differs through its dependence on 
continuation in angular momentum with the consequent 
absence of arbitrary coupling constants. The first paper 
dealing with the Regge-strip approximation1 contains at 
least one mathematical error and certain of the assump­
tions need re-examination. In this paper we present a 
revised set of strip equations and analyze certain general 
features of their solutions. 

Physically the most significant features relate to the 
asymptotic behavior of pole positions and residues. The 
poles generated by our N/D equations do not necessarily 
all retreat to the left-half / plane but their reduced 
residues decrease with a negative power of energy 
outside the strip. I t is this behavior of the residues that 
is primarily responsible for the dominance of the strip 
regions. 

II. THE SUPERPOSITION OF POLE CONTRIBUTIONS 

The Mandelstam representation breaks the two-body 
scattering amplitude into three portions corresponding 
to the three possible pairings of the channel variables 

s, t, u. For example, the (s,t) portion is3 

* This work was done under the auspices of the U. S. Atomic 
Energy Commission. 

f Present address: Princeton University, Princeton, New Jersey. 
1 G. F. Chew, Phys. Rev. 129, 2363 (1963). 
2 G. F. Chew and S. C. Frautschi, Phys. Rev. 123, 1478 (1961). 

1 
Ast(sJ) = — ds'dt'-

p{s'/) 

ts'sW-t) 
(II. l) 

where subtractions if necessary are to be determined by 
analytic continuation from large / in the s and / channels. 
Explicitly, if one assumes an analytic interpolation be­
tween all physical / values as well as meromorphy in the 
right-half angular-momentum plane, Ast(s,t) may be 
decomposed into three parts4: 

1 r00 ds' r d? 
A°t(s,t) = - / - — / _ 

TT J so S —S J (0 t —t 
;P.«W) 

+ £ W , 0 + Z * y , 1 M , (H.2) 
i j 

where the first term needs no subtractions and the 
second and third arise from Regge poles in the s and t 
channels, respectively. Mathematically speaking, only 
poles that reach the right-half / plane for some real 
interval of energy need be recognized; the remaining 
poles may remain buried in the first term of (II. 2). I t is 
proposed here, however, also to separate out any poles 
that closely approach the right-half / plane in order to 
make the remainder as small as possible. 

Assuming all particles of the same mass, we shall take 
the following formula for the contribution from the ith. 
pole in the s channel: 

with 

1 rRi(t',s) 

IT J h t'-i 
(II.3) 

i2<(^) = -C2a<W + l ] 7 i W ( - g . 2 ) a < w P , 
2 \ 2qs*J 

The quantity R^isj) is defined in an elementary sense 

3 We ignore spin complications to simplify the discussion. 
4 N. Khuri, Phys. Rev. Letters 10, 420 (1963) and Phys. Rev. 

132,914 (1963), has proposed a similar decomposition using simple 
powers of s and t rather than Legendre functions of cos0. The 
The Khuri form, however, turns out to have asymptotic proper­
ties that are unsuited to the strip approximation, as shown in the 
following paper [C. Edward Jones, Phys. Rev. 135, B214 (1964)]. 
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by formula (II.3) for — l<Rea;( .y)<0 and otherwise by-
analytic continuation. The function on(s) is the position 
of the ith Regge pole and is assumed to be real analytic 
in the s plane cut from SQ to + ° ° . The function ji(s) 
is the reduced residue (the actual residue divided by 
qs

2ai(s)) and is assumed to have the same reality-
analyticity properties as a»(s). The terms Rill(sft) can 
be shown individually to satisfy the Mandelstam repre­
sentation with double spectral functions asymptotic to 
S=SQ and t—h. Similarly, Rjsi(t,s) will be a sum of terms 
satisfying the Mandelstam representation, but here the 
asymptotes are s=s\ and t=t0.

5 In order to justify the 
choice (II.3) it is necessary to consider the asymptotic 
behavior of cn(s) and ji(s). This is done in the following 
paper. 

The displacement of the / branch point from to to 
h(h>to) in Rih(s,t) and of the s branch point from s0 to 
Si in Rj81(t,s) facilitates the formulation of dynamical 
equations in the new form of strip approximation, as 
already discussed in Ref. 1 where the physical meaning 
of h is explained. So long as one maintains in (II.2) the 
convergent double integral, the displacement in question 
merely changes the value of p s / , and one of the features 
of the new strip approximation is the assumption that 
this convergent integral is small. 

The first step in our approximation scheme then is to 
represent the full amplitude as 

i 

k 
(II.4) 

with only the leading trajectories being included and the 
sign factor %ijtk being ± 1 depending on the signature 
of the trajectory in question. Each of the six terms 
corresponds to a piece of the double spectral function 
that is dominant in a particular strip in the sense of 
Fig. 1. Explicit formulas for the double spectral func­
tions corresponding to (II.4) are given below in 
Eq. (III.6). 

We now list the obvious aspects in which the approxi­
mation (II.4) is satisfactory. First, it contains all the 
poles near the physical region with the correct residues, 
and if all selected trajectories stay to the right of / = — 1 
there are no spurious singularities with a strength to 
compete with poles. Near any important pole of s, in 
other words, for all values of i (or u) we are guaranteed 
accuracy; a corresponding statement also holds near 
poles in / or u. At low energies, in particular, we have at 
least the accuracy of the (many-level) Breit-Wigner 
formula in the physical resonance region for low angular 
momentum, whereas scattering for high angular momen­
tum is controlled by the low-mass particles in the / and 

5 In Ref. 1 a more complicated form than (II.3) was proposed 
for the contribution from a single pole. Both the old and the new 
forms seem physically acceptable. 

FIG. 1. The Man­
delstam diagram, 
showing the strip 
regions where the 
double spectral func­
tions are dominated 
by Regge poles. 

>s 

u channels in the manner by now experimentally 
verified.6 The correct threshold behavior as a function 
of angular momentum is guaranteed by (II.4) as is the 
general analytic structure of partial-wave amplitudes. 

What about high energies? If the only / singularities 
are simple poles, then as is well known (II.4) becomes 
asymptotically accurate for low momentum transfers 
as well as for individual partial waves. With branch 
points in / the situation is more complicated, but we 
know from empirical fits to experiment that the pole 
approximation at high energies does not go wildly wrong. 
In particular, it represents the experimental behavior 
of total cross sections rather well. The use of (II.4) 
therefore ensures a more satisfactory treatment of high 
energies than has been achieved in any pre-Regge 
dynamical calculations. I t is the intermediate energies, 
i.e., near the edge of the strip, whose description is of 
dubious status. In particular, the formula (II.3) be­
comes logarithmically infinite at i—1\ in violation of the 
unitarity condition in the t channel. This deficiency will 
be remedied in the second stage of our approximation 
scheme when we apply the unitarity condition in Sec. 
IV, but its presence in (II.4) forces us to remember that 
the sharp boundary for the strip is artificial. 

Even though (II.4) does not satisfy unitarity exactly 
in any channel, we hope that the violation is minor 
except near the strip boundaries and that by explicit 
imposition of unitarity in the second step of our program 
a sensible, smooth connection between high and low 
energies across the boundary can be achieved. As a 
final argument in support of the plausibility of formula 
(II.4) we remark that it corresponds to the separation 
of the amplitude, familiar in classical nuclear physics, 
into "direct" and "indirect" scattering. In the s channel, 
for example, the terms Rj and Rk arising from crossed 
poles give the "direct" or "potential" scattering that 
dominates high angular momentum and high energies. 
The terms Ri represent "indirect" or "resonance" 
scattering and are important only for low angular 
momentum and low energies. From the dynamical 

6 We refer here to what are usually called "peripheral" collisions. 



B210 G . F . C H E W A N D C . E . J O N E S 

standpoint, of course, the resonance scattering is 
"driven" by the potential. 

III. THE GENERALIZED POTENTIALS 

As a preliminary to step two of our scheme we intro­
duce now two new amplitudes A±(s,zs), each having a 
cut only for positive cos0=zs when s>s0. The Mandel-
stam representation for the original amplitude A(s,zs) 
can be written 

where 
A(s,z9) = AB(s,za)+AL(s,z6), (IH.1) 

1 f00 it' 
AR(s,zs) = - Dt(t',s), 

TrJto tf—t(s,zs) 

1 r00 iv! 
AL(s,z8) = - / =—Du(u',s) 

7T JUQ U' — U($,ZS) 

(III.2) 

Dt and Du being the absorptive parts for the t and u 
channels, respectively. We then define 

A±(s,t) = AR(s,zs)±AL(s, ~zs) (III.3) 

and observe that 

AHs,t) = — / Ids'M , (III.4) 
7T 2 i J (S's)(t'-t) 

where the function Vs
±(t,s) arising from the crossed 

poles is given by 

i r dsr 

V.Ht,s) = - —- I m { £ Rj(s',t)±T, Rk(s',t)} 
IT J S1 S —S 2 k 

1 /*°° duf 

+- / I m E ^ « 0 
T J U1 U —U i 

i r M 
± - / Im £&£*(*',*) 

T J ti tr~U h 

+e(t-h)Z tiRk&u) 
k 

=fc0(^*OE &«;(*,«), (in.8) 
i 

and may be identified with the generalized potential 
defined by Chew and Frautschi.7 The long-range parts 
of the potential including the poles in t are contained in 
the first two lines of (III.8).8 The third line is a short-
range part without poles. 

I t is possible to evaluate the crossed pole contribu­
tions to give 

where 
f p8t(s,t)zj=.p8u{s,t) , S>S0, 

PHs,t)=\ (III.5) 
{—ptuiw^FptuiuJ), s<0. 

The even part in zs of the original amplitude A(s,z8) 
coincides with the even part of A+(s,zs) while the odd 
part coincides with the odd part of A~(syzs). Note, how­
ever, that A+ and A~ are individually neither even nor 
odd except when Bose statistics impose an additional 
constraint. 

In the approximation (II.4) the various double 
spectral functions are given by 

Pst(s,t) = d(t-h)Z Im{Ri(t,s)} 
i 

+B{s-Sl)Y. lm{Rj{s,t)}, 

ps<u{s,u) = e(u—Ui)Y, £ilm{Ri(u,s)} 
i 

+ 0(s-s1)j:im{Rk(s,u)}, (III.6) 
and * 

Ptu{t,u) = 0(t-h)Y, iklm{Rk(t,u)} 
k 

+ 0 (« - iOE&Im{12y( iM)} , 
i 

so that after some calculation we find 

V±(t',s) 

- \ dt'— 
V±(t',s) 

2 

± E lRknO,s)+£kRktl(t,u)] 
h 

1 r ° / 1 1 \ 
+" / dt\—T )£****('>') 

V J ti \t'—t t' — UJ k 

± - / du\ =F E S A ' « 0 , (HI.9) 
7T J U1 \u'—t u'—ul i 

with s+uf+f=s+u+t=^ tn2, the last two terms of 
(III.9) being odd functions of cos0s for A+ and even 
functions for A~ and therefore not contributing to the 
physical amplitude A, In Ref. 1 these last terms were 
erroneously omitted. They correspond to short-range 
forces and contain no poles but are needed if the left-
hand cut in cos0s is to be completely removed. As will be 
seen in Sec. VI they are important in connection with 
asymptotic behavior. The essential feature of (III.9) as 
opposed to (III.8) is that for t<0 and s>So the pole 
positions and residues occur only with negative argu­
ments and are correspondingly real. Thus the bootstrap 
calculation can be carried through with consideration 
only of I real and, in view of the Froissart limit,9 / ^ 1. 

i r V8M 

TTJ f-
, (IIL7) 

7 G. F. Chew and S. C. Frautschi, Phys. Rev. 124, 264 (1961). 
8 With proper attention to the definition of divergent integrals a 

bound state in the t or u channels can be shown on the basis of 
(III.8) to give the expected delta function in t. 

9 M. Froissart, Phys. Rev. 123, 1053 (1961). 
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IV. THE N/D DYNAMICAL EQUATIONS 
FOR THE s CHANNEL 

We assume as in Ref. 1 that inside each strip the two-
body unitarity condition is adequate, leaving open the 
question of how many two-body reactions to include. 
For the s channel, if we suppress the ( ± ) superscript, 
the considerations described in Sec. I l l of Ref. 1 lead 
to the integral equation [ ( I I I . 11) of the earlier paper] 

Nl(s) = Bl
p(s) 

1 rsl BfW-Bfis) l rsl 1 
+- / ds'-

7T J so 
-Pl(s')Ni(s'), (IV. 1) 

the amplitude for the /th partial wave in the s channel 
being given by 

where 

Al(s) = q.»B,(s) 
= qs>ltNl(s)/Dl(s)J, 

(IV.2) 

Di(s) = l— / ds' - , (IV.3) 
7T J 8n S — S 

pi being the phase-space factor. The dynamics is then 
concentrated in the function Bip(s), defined by 

Bl
p(s) = Bl(s)-

1 fsl Im£zO') 
- / ds' , / r ea l , (IV.4) 
T J sn S' — S 

so as to contain the poles of the / and u channels but not 
those of the s channel. The latter arise from the zeros 
of Di(s).10 The function Bip(s) plays for the s channel 
somewhat the same role as the potential in a Schrodinger 
equation, but the analogy is not perfect. In particular 
Bip(s) is not simply the partial-wave projection of 
formula (III.9), although such an approximation is 
often made and was advocated in Ref. 1. We shall see 
in the following section that Bip(s) receives a contribu­
tion from the ^-channel pole terms even though it con­
tains itself no poles in s. 

V. THE CALCULATION OF Bip(s) 

The Froissart-Gribov definition of Bi±(s) for complex 
/ can be given in either of two forms. The original form 
involves the discontinuity D^fas) of A±(s,t) in crossing 
the / cut,11 

it 

A±(s,t) itself13: 

1 f° 
Bl±(s) = 

2w J-X 

dt r i t v 
A±(s,t).(V.2) 

2x J^, qs
2l+2L ' \ 2qs 

In the new strip approximation, A±{s,t) is given by 
formula (III.7) for which the corresponding / dis­
continuity is 

+ V±(t,s). (V.3) 

Now Vs
±(t,s) has no discontinuity in s for SQ<S<SI, so 

from (IV.4) we see that in calculating Bip(s) we are to 
take the entire generalized potential contribution, sub­
tracting nothing away. The first term in (V.3) when 
substituted into (V.l) gives a function cut in s between 
— oo and So—ti, due to the s discontinuity in 
qs~2lQi(l+t/2qs

2), and also cut between s0 and + oo due 
to the s discontinuity of Ri(t,s). The portion of the latter 
cut between si and <*> must be small if the strip approach 
makes sense, so when the cut between s0 and Si is re­
moved according to the prescription (IV.4) we have 
(taking ti=ui and all masses equal) 

1 /••«-'! ds' 
BiPHs)=Vs,lHs)+~ / — 

7T J _oo S — 

f 
dt(l±&Ri(t,s} 

Pi(-l-t/2q..*) 

i(-qS'
2)l+1 

(V.4) 

By VSti
±(s) is meant the /-wave projection of the 

generalized potential contribution: e.g., formula (III.9) 
inserted in place of A± on the right-hand side of (V.2). 
By choosing this particular method only real pole 
positions and residues are encountered in the evaluation 
for SQ<S<S\: 

vs,iHs)=-
2irq, 

1 r° 
/ dt[ImQl(\+t/2qs

s>)~] 
<s

2l+2 J-oo 

ds' 
X 

1 

+-

1 r 0 0 6 

7T J si S* 
- [£ Ri(s',t)±Z Rh(s',t)l 

du' 
•XMRMA-RM,?)) 

T J UXU ~U 3 

du' 1 r00 dt / t \ 1 r°° du' 
BiHs)=— e , ( i + — W f e ) , (V.l) ± - / ZMRkWd-RkW)) 

2T J to qs
2l+2 \ 2qs

2/ w J ti u'—u h 

while the second form, pointed out by Wong,12 involves 
10 Note that because Di(s) is real analytic in the s-plane cut 

between s = so and s = Si the same will be true for any ^-channel pole 
position ai(s) or reduced residue ji(s) calculated from a zero of 
Di(s), if multiple / poles are absent from Di(s). 

11 M. Froissart, Report to the La Jolla Conference on Theoretical 
Physics, June 1961 (unpublished); V. N. Gribov, Zh. Eksperim. i 
Teor. Fiz. 41, 667 and 1962 (1961) [English transl.: Soviet Phys.-— 
JETP 14, 478 and 1395 (1962)]. 

12 D. Wong (private communication, 1962). 

1 T00 dt' 

+~ / 
TrJh t'-t 

1 r0 0 dt' ) 
=- / — £ & * ; ( * > ' ) . (V.5) 

7T J ui t — t 7 J 
13 We have written Eq. (V.2) for I real and #s

2>0, the imaginary 
part of Qi to be evaluated as the negative / axis is approached from 
above. 
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The expression (V.4) together with (V.5) is con­
siderably more complicated than that for Ref. 1 but 
still contains the pole parameters only where they are 
real. The second term in (V.4), arising from the 
^-channel poles, had no counterpart in Ref. 1 and may 
not be of great importance for s inside the strip since 
the integral over ds' is entirely outside. Keeping this 
term, however, tends to alleviate the N/D conflict be­
tween threshold and asymptotic behavior that becomes 
severe for high values of /. Our N/D equations (IV. 1) 
and (IV.3) in any event minimize this conflict by avoid­
ing an integration to infinity, but the solutions for / > 1, 
if examined as s —> °o ? necessarily violate the unitarity 
condition unless terms like those in (V.4) are included 
in Bip±(s). If the partial-wave amplitude emerging from 
the N/D calculation were exactly of the form implied 
by the ansatz (II.4), the conflict with unitarity would 
be entirely removed by the extra terms. To the extent 
that input and output are roughly consistent, the con­
flict is alleviated. 

In formula (V.5) integrations to — °o in t occur, whose 
convergence depends on the asymptotic behavior of the 
pole parameters. I t is not expected in the strip approxi­
mation that this asymptotic behavior should be reliable, 
but unless the integrals in (V.5) are strongly convergent 
there will be important contributions from outside the 
strip that cast doubt on the consistency of the whole 
approach. Let us now consider, therefore, the behavior 
of pole parameters for large negative argument in con­
nection with the evaluation of (V.5). 

VI. ASYMPTOTIC BEHAVIOR OF 
THE POLE PARAMETERS 

I t is not difficult to show that as /-^<x> for s fixed 
RjSl(t,s) behaves like yj(t)ta>w In2/,14 so this combination 
of factors should vanish for large t if the strip concept is 
to have any validity. Such a vanishing, furthermore, is 
required if the integrals appearing in the expressions 
(V.4) and (V.5) are to converge for all R e / ^ 0 . The 
Froissart limit9 guarantees that all poles retreat to the 
left of / = 1 for negative /, so it will suffice to have jj(t) 
decrease asymptotically at least as fast as ir1. 

As our denominator function Di(s) is constrained 
through (IV.3) to approach 1 as s-^oo for any finite 
Ni(s), the position in the / plane of a zero of Di(s) for 
large ^ must approach an infinite fixed-/ singularity of 
the numerator function Ni(s). In particular, the 
numerator function may have fixed poles arising from 
the solution of Eq. (IV. 1), which has been shown to be 
essentially Fredholm in character.15 For nonrelativistic 
potential scattering Taylor has shown that there are no 
poles in Ni(s) beyond those already appearing in the 
potential and that it suffices to analyze the fixed 
singularities of the potential (i.e., the Born approxima­
tion) in order to deduce the asymptotic behavior of 

14 This demonstration is given explicitly in the following paper 
by one of the authors (C. E. J.). 

15 G. F. Chew, Phys. Rev. 130, 1264 (1963). 

Regge-pole parameters.16 We have no such assurance in 
our case and in fact must expect Fredholm (dynamical) 
fixed poles in the numerator function. In particular 
there are neighborhoods in the complex / plane where 
the kernel of the integral equation (IV. 1) is unbounded 
in normalization. The most apparent such neigh­
borhoods are near the Gribov-Pomeranchuk fixed poles 
at 1= — 1, —2, • • • of formula (III.9) for the ^-channel 
generalized potential. These poles necessarily occur in 
Bip(s) through the first term of (V.4), a straightforward 
calculation showing that they cannot be canceled by 
the second term of this formula.17 Near one of these poles 
the kernel of (IV. 1) can achieve an almost arbitrary 
normalization without much change in the (s,sf) de­
pendence. I t follows that an infinite number of eigen­
values of the homogeneous equation will be accessible. 
In other words, each fixed-/ pole of the generalized 
potential will produce a swarm of Fredholm fixed-/ 
poles in the numerator function, and each of the Fred­
holm fixed-/ poles then will serve as a possible terminal 
point for a Regge trajectory. The novel feature of this 
situation is that our terminal points are dynamically 
determined and will vary according to the force 
strength. 

Let us now examine the possible additional fixed-/ 
singularities contained in formula (V.4) for Bip(s). In 
the generalized potential as given by (III.9) there are 
two types of terms, corresponding to the two distinct 
double spectral regions in (III .5): 

(a) 

(b) - J &'{£,•(*>') 
7T J ti 

ds 
s'-s 

• 1 1 -
=F 

.t' — t tf-u. 
(VI.l) 

±Rtf,t)-
/'-

The asymptotic behavior for large / determines the 
location of the leading singularity in the / plane. By 
assuming that Yy(/)^/~e> the leading singularity in (a) 
occurs at /=ay(o°) — ey. On the other hand, terms of the 
type (b) have the Gribov-Pomeranchuk pole at / = — 1 
for even signature and / = — 2 for odd, as well as a 
singularity at l=aj(<x>) — €j. The second term of (V.4) 
has its leading singularity at Z=a» (<*>) — €i. 

Now suppose that18 e,-, ey> 2 so the contributions out-

16 John Robert Taylor, Ph.D. thesis, University of California, 
Berkeley, June 1963 (unpublished). 

17 It is the presence of energy cuts in the relativistic generalized 
potential that prevents a cancellation, as first noted by Gribov and 
Pomeranchuk, in Proceedings of the 1962 International Conference 
on High Energy Physics at CERN, edited by J. Prentki (CERN, 
Geneva, 1962), p. 522. See also Phys. Letters 7, 239 (1962). 

18 R. Serber, Phys. Rev. Letters 10, 357 (1963), has pointed out 
that high-energy elastic-scattering cross sections appear to fall off 
as the inverse fifth power of momentum transfer squared. This 
would imply e~2.5 for the Pomeranchuk trajectory. 
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side the strip are really small. Terms of the type (b) then 
dominate the t asymptotic behavior of the generalized 
potential at least for positive signature and correspond­
ingly should play a controlling role in the asymptotic 
behavior of Regge poles. In particular, for positive 
signature we anticipate a cloud of fixed-/ Fredholm poles 
in the numerator function to surround the point / = — 1 
(where there must be an essential singularity, as 
emphasized by Gribov and Pomeranchuk17), the maxi­
mum displacement of the poles from their "source" 
depending on the force strength. Assuming no trajectory 
intersections, the Fredholm pole standing farthest to 
the right must be the terminal point of the leading 
Regge trajectory, and without a numerical calculation 
all we can say about its position is that it must lie 
between / = — 1 and I— + 1.19 Of course, once the possi­
bility is raised that with very strong forces this terminal 
point may lie to the right of / = 0 , one is tempted to see 
here a means of avoiding the well-known awkwardness 
with the Pomeranchuk trajectory when the point 1= 0 is 
crossed at negative energy. 

Next, what about the asymptotic behavior of reduced 
residues? In the following paper it is shown that when 
the leading singularity of the numerator function is a 
simple pole the reduced residue vanishes at least as fast 
as 1/s. The possibility of a multiple pole in Ni(s) is also 
discussed. I t has not been possible to demonstrate as 
strong a tendency to vanish asymptotically as is indi­
cated experimentally or as was assumed above, and if 
tj is actually equal to 1, the potential terms would have 
a fixed singularity at Z=ay(oo)— 1 for both signatures 
which might be more important than the Gribov-
Pomeranchuk singularity. The above arguments would 
not thereby be altered in any important way, but in any 
event there is no reason to trust our equations outside 
the strip. If the rate of change of yi{s) near s=0 is 
successfully described we shall be satisfied. 

VII. SUMMARY AND CONCLUSION 

We have presented a set of dynamical equations 
suitable for bootstrap calculations with zero-spin ex­
ternal particles. The scattering amplitude is represented 
in two alternative ways, the pole superposition (II.4) 
and the N/D prescription of Sec. IV, neither of which is 
exact but both of which are supposed to be reasonably 
accurate at low energies and low angular momentum 
where bound states and resonances occur. The bootstrap 
calculation consists of a matching of the pole parameters 
in the two forms for real / ̂  1 and low energies. The pole 
superposition then gives the high angular-momentum 

19 The constraint to lie to the left of / — + 1 is not built explicitly 
into our equations but, as explained in reference 1, is to be imposed 
separately. 

components at low energy and hopefully the low 
momentum-transfer behavior at high energy. 

The spirit of this paper is the same as that of Ref. 1, 
and the N/D prescription has not been changed in any 
way from that of the earlier paper. We have proposed 
here, however, an explicit and simple expression for the 
pole superposition that conforms term by term to 
the Mandelstam representation. The clarity thereby 
achieved has allowed the correction of an error in Ref. 1 
involving the "third" double spectral region. We are 
also proposing now to augment the " input" function 
Bip(s) for the N/D equations by a contribution from 
the direct-channel poles. 

An analysis of our bootstrap equations has revealed 
two physically important features absent in ordinary 
potential scattering (and which do not accord with con­
jectures made in Ref, 1): (a) The terminal point for our 
Regge trajectories is dynamically determined and for 
strongly attractive forces may lie to the right of /=0.2 0 

(b) Our reduced residues vanish for large energy at least 
as fast as 1/s. Both these features have immediate 
relevance to the problem of fitting high-energy data with 
Regge poles. 

There remains the problem raised by Mandelstam of 
cuts in angular momentum.21 This difficulty has had no 
chance to arise here because we have not attempted 
explicitly to impose unitarity beyond the two-body 
region. Conceding the correctness of Mandelstam's con­
clusion, there is still room for belief that our bootstrap 
scheme is sensible if the cuts are weak in importance 
compared to the poles. In energy and momentum-
transfer variables the dominant role played by poles has 
been the striking feature of strong-interaction physics; 
the same may well be true for angular momentum. 

Put another way, in Ref. 1 it was pointed out that 
experimentally the bulk of resonance decay seems to 
occur in two-body channels if unstable particles are 
considered. This circumstance, coupled with the as­
sumption that stable and unstable particles eventually 
will achieve equivalent status in the dynamics, suggests 
that conclusions based on the two-body unitarity condi­
tion have a wide range of validity. Our approximation 
scheme can handle any finite number of two-body 
reactions, with the choice of the parameter s\ depending 
on how many channels are included. Hopefully, when 
a sufficiently large number of channels is incorporated 
into the N/D calculation, the precise value of s\ will 
become unimportant. Were that to happen, the goal of 
a parameter-free dynamics would have been achieved. 

20 The latter circumstance would not invalidate our whole 
program because there will still be regions of energy (perhaps on 
unphysical sheets) where the pole retreats to the left and allows 
the function (II.3) to be defined. 

21 S. Mandelstam, Nuovo Cimento 30, 1148 (1963). 


